35 resultados para Triticum aestivum

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal imaging is a valuable tool for the elucidation of gas exchange dynamics between a plant and its environment. The presence of stomata in wheat glumes and awns offers an opportunity to assess photosynthetic activity of ears up to and during flowering. The knowledge of spatial and temporal thermodynamics of the wheat ear may provide insight into interactions between floret developmental stage (FDS), temperature depression (TD) and ambient environment, with potential to be used as a high-throughput screening tool for breeders. A controlled environment study was conducted using six spring wheat (Triticum aestivum L.) genotypes of the elite recombinant inbred line Seri/Babax. Average ear temperature (AET) was recorded using a hand held infrared camera and gas exchange was measured by enclosing ears in a custom built cuvette. FDS was monitored and recorded daily throughout the study. Plants were grown in pots and exposed to a combination of two temperature and two water regimes. In the examined wheat lines, TD varied from 0.1°C to 0.6°C according to the level of stress imposed. The results indicated that TD does not occur at FDS F3, the peak of active flowering, but during the preceding stages prior to pollen release and stigma maturity (F1-F2). These findings suggest that ear temperature during the early stages of anthesis, prior to pollen release and full extension of the stigma, are likely to be the most relevant for identifying heat stress tolerant genotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: To understand effects of tissue type, growth stage and soil fertilisers on bacterial endophyte communities of winter wheat (Triticum aestivum cv. Hereward). Methods: Endophytes were isolated from wheat grown under six fertiliser conditions in the long term Broadbalk Experiment at Rothamsted Research, UK. Samples were taken in May and July from root and leaf tissues. Results: Root and leaf communities differed in abundance and composition of endophytes. Endophytes were most abundant in roots and the Proteobacteria were most prevalent. In contrast, Firmicutes and Actinobacteria, the Gram positive phyla, were most prevalent in the leaves. Both fertiliser treatment and sample time influenced abundance and relative proportions of each phylum and genus in the endosphere. A higher density of endophytes was found in the Nil input treatment plants. Conclusions: Robust isolation techniques and stringent controls are critical for accurate recovery of endophytes. The plant tissue type, plant growth stage, and soil fertiliser treatment all contribute to the composition of the endophytic bacterial community in wheat. These results should help facilitate targeted development of endophytes for beneficial applications in agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One Norwegian and one UK spring wheat cultivar, Bjarne and Cadenza, respectively, were grown in climate chambers to investigate the effects of lower to moderate temperatures during grain filling on the gluten quality. Two experiments were carried out with weekly fertilization until anthesis, while post-anthesis fertilization was applied in a third experiment. The proportions of different gluten proteins were affected by temperature in a similar manner for both cultivars when grown without post-anthesis fertilization. However, whereas low temperature strongly decreased %UPP for Cadenza, Bjarne had high %UPP at all temperature regimes. The results indicated that the assembly of glutenin polymers in Bjarne was less sensitive to variation in temperature than in Cadenza. Thus, our results suggested that the temperature influenced the proportion of different gluten proteins in both cultivars, while its effects on the assembly of the glutenin polymers were cultivar dependent. The duration of grain filling was longer at the lower temperatures, and this was associated with increased grain weight. Temperature had little effect on the amount of protein accumulated per grain, thus the proportion of proteins was strongly decreased at lower temperatures. This was to some extent, but not fully counteracted by post-anthesis fertilization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa) - wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30-40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57-1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An X-ray micro-tomography system has been designed that is dedicated to the low-dose imaging of radiation sensitive living organisms and has been used to image the early development of the first few days of plant development immediately after germination. The system is based on third-generation X-ray micro-tomography system and consists of an X-ray tube, two-dimensional X-ray detector and a mechanical sample manipulation stage. The X-ray source is a 50 kVp X-ray tube with a silver target with a filter to centre the X-ray spectrum on 22 keV.A 100 mm diameter X-ray image intensifier (XRII) is used to collect the two-dimensional projection images. The rotation tomography table incorporates a linear translation mechanism to eliminate ring artefact that is commonly associated with third-generation tomography systems' Developing maize seeds (Triticum aestivum) have been imaged using the system with a cubic voxel linear dimension of 100 mum, over a diameter of 25 mm and the root lengths and volumes measured. The X-ray dose to the plants was also assessed and found to have no effect on the plant root development. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low molecular weight glutenin subunits (LMW-GS) are major components of the glutenin polymers which determine the elastomeric properties of wheat (Triticum aestivum L.) gluten and dough. They comprise a complex mixture of components and have proved to be difficult to purify for detailed characterisation. The mature LMW subunit proteins comprise two structural domains, with one domain consisting of repeated sequences based on short peptide motifs. DNA sequences encoding this domain and a whole subunit were expressed in Escherichia coli and the recombinant proteins purified. Detailed comparisons by spectroscopy (CD, FT-IR) and dynamic light scattering indicated that the repetitive and non-repetitive domains of the proteins formed different structures with the former having an extended conformation with an equilibrium between poly-L-proline II-like structure and type II’ b-turns, and the latter a more compact globular structure rich in a-helix. Although the structures of these two domains appear to form independently, dynamic light scattering of the whole subunit dissolved in trifluoroethanol(TFE) suggested that they interact, leading to a more compact conformation. These observations may have relevance to the role of the LMW-GS in gluten structure and functionality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seeds of 39 seed lots of a total of twelve different crops were stored hermetically in a wide range of air-dry environments (2-25% moisture content at 0-50 degrees C), viability assessed periodically, and the seed viability equation constants estimated. Within a species, estimates of the constants which quantify absolute longevity (K-E) and the relative effects on longevity of moisture content (C-W) and temperature (C-H and C-Q) did not differ (P >0.05 to P >0.25) among lots. Comparison among the 12 crops provided variant estimates of K-E and C-W (P< 0.01), but common values of C-H and C-Q (0.0322 and 0.000454, respectively, P >0.25). Maize (Zea mays) provided the greatest estimate of K-E (9.993, s.e.= 0.456), followed by sorghum (Sorghum bicolor) (9.381, s.e. 0.428), pearl millet (Pennisetum typhoides) (9.336, s.e.= 0.408), sugar beet (Beta vulgaris) (8.988, s.e.= 0.387), African rice (Oryza glaberrima) (8.786, s.e.= 0.484), wheat (Triticum aestivum) (8.498, s.e.= 0.431), foxtail millet (Setaria italica) (8.478, s.e.= 0.396), sugarcane (Saccharum sp.) (8.454, s.e.= 0.545), finger millet (Eleusine coracana) (8.288, s.e.= 0.392), kodo millet (Paspalum scrobiculatum) (8.138, s.e.= 0.418), rice (Oryza sativa) (8.096, s.e.= 0.416) and potato (Solanum tuberosum) (8.037, s.e.= 0.397). Similarly, estimates of C-W were ranked maize (5.993, s.e.= 0.392), pearl millet (5.540, s.e.= 0.348), sorghum (5.379, s.e.=0.365), potato (5.152, s.e.= 0.347), sugar beet (4.969, s.e.= 0.328), sugar cane (4.964, s.e.= 0.518), foxtail millet (4.829, s.e.= 0.339), wheat (4.836, s.e.= 0.366), African rice (4.727, s.e.= 0.416), kodo millet (4.435, s.e.= 0.360), finger millet (4.345, s.e.= 0.336) and rice (4.246, s.e.= 0.355). The application of these constants to long-term seed storage is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m(2) in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P < 0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Hexaploid wheat is one of the most important cereal crops for human nutrition. Molecular understanding of the biology of the developing grain will assist the improvement of yield and quality traits for different environments. High quality transcriptomics is a powerful method to increase this understanding. Results: The transcriptome of developing caryopses from hexaploid wheat ( Triticum aestivum, cv. Hereward) was determined using Affymetrix wheat GeneChip (R) oligonucleotide arrays which have probes for 55,052 transcripts. Of these, 14,550 showed significant differential regulation in the period between 6 and 42 days after anthesis ( daa). Large changes in transcript abundance were observed which were categorised into distinct phases of differentiation ( 6 - 10 daa), grain fill ( 12 - 21 daa) and desiccation/maturation ( 28 - 42 daa) and were associated with specific tissues and processes. A similar experiment on developing caryopses grown with dry and/or hot environmental treatments was also analysed, using the profiles established in the first experiment to show that most environmental treatment effects on transcription were due to acceleration of development, but that a few transcripts were specifically affected. Transcript abundance profiles in both experiments for nine selected known and putative wheat transcription factors were independently confirmed by real time RT-PCR. These expression profiles confirm or extend our knowledge of the roles of the known transcription factors and suggest roles for the unknown ones. Conclusion: This transcriptome data will provide a valuable resource for molecular studies on wheat grain. It has been demonstrated how it can be used to distinguish general developmental shifts from specific effects of treatments on gene expression and to diagnose the probable tissue specificity and role of transcription factors.